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Abstract
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accepted method for calculating price indexes using such high-frequency data, reflecting a
lack of systematic evidence on the performance of different approaches. We use a dataset
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methods for computing month-to-month inflation.
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1 Introduction

The ability to detect changes in the inflation rate accurately and in a timely way is essential for

effective policymaking. Central banks, for example, rely on inflation measures when setting interest

rates, and their success in maintaining price stability depends in part on inflation expectations and

inflation-indexed labor contracts—both of which are likely to be influenced by the most recent

inflation statistics (e.g., Coibion et al., 2018). In addition, many benefit and social insurance

programs are indexed to inflation measures, meaning their capacity to protect individuals from

adverse inflation shocks depends on how quickly and accurately they reflect sudden changes in

consumer purchasing power.

Traditionally, National Statistical Institutes (NSIs) collect price data for consumer price indexes

(CPIs) using in-person collectors. This approach yields a relatively small sample of price quotes

and lacks product-level expenditure information, resulting in month-to-month changes in the index

that can be noisy. In addition, index methods typically used to construct CPIs—based on historical

expenditure weights at the product-aggregate level—can result in an index that becomes rapidly

unrepresentative of spending patterns over time.

The increasing availability of large, comprehensive transaction-level scanner datasets, which

contain near real-time expenditure and price information for thousands of products across millions

of transactions, has created new opportunities for accurately measuring month-to-month price

changes for key segments of the economy.1 These datasets are now increasingly used by NSIs to

produce price indexes.2 However, index construction using such data presents challenges, including

high rates of product entry and exit and volatile movements in prices and quantities—both of

which can introduce biases into the resulting index (Ivancic et al., 2011; de Haan and van der

Grient, 2011). While Diewert and Fox (2022) have recently presented theoretical and simulation

1Scanner datasets typically cover fast-moving consumer goods, which make up approximately 40% of household
expenditure on goods and 15% of expenditure on goods and services (see Jaravel, 2019).

2Retail chains have agreed to share their high-frequency product-level volume and sales data with NSIs in
several countries, including Australia, Canada, Japan, Netherlands, Norway, Switzerland and the UK (Diewert,
2022), with many of these agencies working on, or already incorporating, transaction data into their CPI.
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evidence on the extent of substitution bases in alternative methods, empirical evidence remains

limited. Moreover, there is still no universally accepted method for calculating price indexes with

high-frequency transaction data.

We provide a systematic empirical comparison of alternative index number methods for com-

puting month-to-month inflation with high-frequency transaction-level data. We use household

scanner data from the Kantar FMCG At-Home Purchase Panel, in which households record pur-

chases of fast-moving consumer goods. These include food and beverages (both alcoholic and

non-alcoholic), as well as household supplies such as toiletries, cleaning products, and pet foods.

The dataset has information on expenditures and transaction prices for over 290,000 unique prod-

ucts and more than 300 million transactions spanning eight years (2012-2019). We compute price

indexes for fast-moving consumer goods as a whole and separately for each of the 178 product

categories, comparing fixed-base, chained bilateral, and multilateral index methods.

We begin by showing that the use of fixed expenditure weights can cause a price index to

quickly become unrepresentative: by the final month of our data, only 32% of expenditure is on

products that were also purchased in the first month. Chained bilateral indexes address this by

updating the basket of products over time, but they can introduce chain drift bias. This bias can

arise when changes in product weights between two periods are correlated with prices in other

periods (see Reinsdorf, 1998; Diewert, 2022).

We show that chained bilateral indexes can exhibit substantial chain drift. For example,

a chained Törnqvist index—the type of index used by the U.S. Bureau of Labor statistics in

calculating the C-CPI-U—reports cumulative inflation of -16% for all fast-moving consumer goods

over 2012-2019. At the category level, it shows cumulative inflation above 20% for nine product

categories and below -50% for ten product categories. Inflation of this magnitude is not plausible

for this sector and time period. For indexes computed at a higher level of time aggregation, chain

drift is reduced but can remain significant.
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One potential solution to tackling this bias is to chain across periods that are not necessarily

adjacent but are instead selected based on similarity in price structures or available products.

In principle, this approach can reduce chain drift, but its empirical performance has not been

extensively explored. We find that the bias associated with monthly chaining is only marginally

reduced when applying this method.

A second approach to addressing chain drift bias is to use multilateral index methods, which

compare the current month’s price level to all previous months over which the index is computed,

and are free from chain drift by construction. We compare three “GEKS”-type multilateral indexes

based on the Törnqvist, Fisher and Walsh indexes. Each of these underlying bilateral indexes

is “superlative”, meaning it equals the true cost-of-living index defined by Könus (1924) under

specific preferences that can be represented by a functional form that approximates arbitrary

preferences to the accuracy of a second-order approximation (Diewert, 1976). The corresponding

multilateral indexes are the Caves-Christensen-Diewert-Inklaar (CCDI), GEKS-Fisher and GEKS-

Walsh indexes (where GEKS stands for Gini-Eltetö-Köves-Szulc).3

Using our dataset, the CCDI index reports cumulative inflation of 2.5% for all fast moving

consumer goods. The other GEKS-type indexes generate similar results to the CCDI index.

However, we find the former are more sensitive to large product-level price changes likely to reflect

measurement error. NSIs might therefore prefer the CCDI index. We also evaluate the Geary-

Khamis (GK) index, which is not constructed from a superlative bilateral index number. It is

microfounded by a consumer model with either linear or Leontief preferences, making it more

prone to substitution bias. This theoretical limitation is reflected in practice: across product

categories, the 25th and 75th percentiles of the distribution of differences in average monthly

inflation relative to the CCDI index are -0.002 and 0.002 percentage points (ppt) for the GEKS-

Fisher index, -0.004 ppt and 0.004 ppt for the GEKS-Walsh index, and -0.01 ppt and 0.02 ppt for

the GK index.

3The CCDI index is also known as the GEKS-Törnqvist index.
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A practical drawback of multilateral indexes in their pure form is that they require revisions

to historical numbers whenever new data becomes available, making them unsuitable for use in

official CPIs.4 To avoid revisions, statistical agencies can apply splicing methods, which link

multilateral indexes computed over different ‘windows’ of time. While splicing eliminates the

need to make retrospective updates, it reintroduces some chain drift bias. While various splicing

methods have been proposed by researchers and practitioners and adopted by some NSIs, their

relative performance remains debated.

We evaluate alternative splicing methods and window lengths by comparing each spliced series

to its corresponding chain-drift-free multilateral index computed over all 96 months of our data.

The difference between the two quantifies the chain drift bias introduced by the splicing procedure.

We find that spliced multilateral indexes exhibit substantially less chain drift bias than their

chained bilateral counterparts. However, the bias can still be non-negligible, making the choice of

index number formula and splicing method important in practice. The GK index is particularly

sensitive to the choice of splicing method.

Our results suggest that the CCDI multilateral index, calculated using a 25-month window,

performs comparatively well and emerges as a leading candidate among the alternatives evaluated.

The choice of splicing method has relatively little impact on the degree of chain drift bias for this

index. Among the available methods, the mean splice—which averages across multiple splicing

periods and is therefore less sensitive to linking on an anomalous month than alternatives—is the

most attractive splicing option.

We conclude our analysis by examining the main drivers of chain drift bias in spliced multi-

lateral indexes. We show that the most significant predictor of chain drift bias across product

categories is the degree of product entry and exit, or “churn”, within the category. This analysis

4For instance, the U.S. Bureau of Labor Statics and the UK Office for National Statistics have policies of not
revising published headline CPI figures unless a significant error is identified. This is standard practice interna-
tionally.
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highlights that categories with high product turnover are where chain drift bias is likely to be

most pronounced, and where longer window lengths offer the greatest potential benefits.

Our work contributes to a literature that evaluates index number methods for measuring

inflation with high-frequency scanner data. This includes Feenstra and Shapiro (2003), who use

scanner data for canned tuna over two years to compare the performance of fixed-base and chained

bilateral indexes; Ivancic et al. (2011), who analyze 19 product categories over 15 months to

quantify chain drift among superlative bilateral indexes by comparing them to a chain-drift-free

GEKS-Fisher index; Melser (2018) who compares multilateral indices calculated on scanner data

with different linking approaches and window lengths for eight product categories; and Diewert and

Fox (2022) who simulate a dataset based on consumers with constant elasticity of substitution

(CES) preferences and compare price series computed with different bilateral and multilateral

index numbers to the true CES cost-of-living index.

A limitation of previous work is that empirical evidence has typically been confined to a subset

of available index methods and a small number of product categories over relatively short time

periods. We contribute by systematically comparing the leading methods for measuring inflation

using transaction data with substantially broader scale and scope.

Our work also contributes to the broader literature that uses scanner data to advance un-

derstanding of various aspects of inflation measurement. This includes research quantifying the

impact of product entry and exit on changes in the cost-of-living (e.g., Broda and Weinstein, 2010);

measuring heterogeneity in inflation rates across households (e.g., Kaplan and Schulhofer-Wohl,

2017; Jaravel, 2019); and examining the effects of intertemporal substitution due to consumer

hoarding on inflation (e.g., Ueda et al., 2024).5 We contribute to the strand of this literature

focused on the measurement of high-frequency price dynamics, which includes work documenting

5Ueda et al. (2024) propose a type of price index that eliminates intertemporal substitution bias, illustrating
their approach using scanner data over 30 years for processed food and daily necessities, which account for 20%
of households’ expenditure. They compare their method with rolling-window CCDI indexes using daily data, with
windows of 7, 28 and 30 days. In contrast to our paper, they do not consider alternative multilateral indexes,
splicing methods, or other potential drivers of chain drift bias.
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the frequency of individual product price adjustments (e.g., Eichenbaum et al. (2011); see also

the survey by Nakamura and Steinsson (2013)); and studies of high-frequency inflation during the

COVID-19 pandemic (e.g., Jaravel and O’Connell, 2020).

In Section 2 we outline the different index number methods and in Section 3 we describe the

dataset we use to empirically assess their performance. In Section 4 we compare fixed-based and

chained bilateral indexes with multilateral indexes. In Section 5 we focus on spliced multilateral

indexes, quantifying how their degree of chain drift bias varies with the linking method and window

length used in their construction, and exploring the drivers of this bias. We conclude and discuss

potential avenues for future research in a final section.

2 Inflation measurement with high-frequency data

Suppose, for a sequence of periods 1, . . . , T we observe period-specific prices pt = (pt1, . . . , p
t
N)

′

and quantities qt = (qt1, . . . , q
t
N)

′ for N goods and we wish to compare how the cost of purchasing

the basket of goods evolves over time. In this section, we examine alternative approaches to doing

so, with reference to the use of high-frequency data sources such as scanner or transaction data.

2.1 Bilateral index numbers

Suppose we are interested in comparing the change in the cost of the basket of goods between two

sequential periods, t and t+1. One way to measure this change is with a Lowe price index, which

takes the form P t,t+1
Lo = pt+1′q

pt′q
, and is commonly used in the construction of CPIs. If base-period

quantities are used (i.e., q = qt) the index is known as the Laspeyres index (P t,t+1
L ) and if end-

period quantities are used (q = qt+1) it is known the Paasche index (P t,t+1
P ). Both indexes can

be rewritten in terms of price relatives between t and t+ 1, pt+1
n

ptn
, weighted by expenditure shares,
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stn = ptnq
t
n

pt′qt . The resulting expressions are:

P t,t+1
L =

∑
n

stn
pt+1
n

ptn
P t,t+1
P =

(∑
n

st+1
n

(
pt+1
n

ptn

)−1
)−1

.

A drawback of these indexes is that they suffer from substitution bias. This arises because

they use expenditure weights from only one period and therefore fail to account for the fact that

when relative prices change, consumers typically substitute away from goods that have become

more expensive and toward those that have become relatively cheaper.

A solution to the problem of substitution bias is offered by superlative indexes (see Diewert,

1976), which combine both base and final period weights. Three commonly used superlative

indexes are the Fisher index—a geometric mean of the Laspeyres and Paasche indexes—P t,t+1
F ,

the Törnqvist index—a geometric mean of price changes weighted by average spending shares in

the two periods—P t,t+1
Tq , and the Walsh index—an arithmetic average of price changes weighted

by the geometric mean of quantities in the two periods—P t,t+1
W :

P t,t+1
F = (P t,t+1

L P t,t+1
P )1/2 P t,t+1

Tq =
∏
n

(
pt+1
n

ptn

)0.5(stn+st+1
n )

P t,t+1
W =

∑
n

√
qtnq

t+1
n pt+1

n∑
n

√
qtnq

t+1
n ptn

.

2.2 Chaining and chain drift

Now suppose we are interested in tracking how the cost of the basket of goods evolves over multiple

periods, and consider comparing the first to some later period s > 2. One approach is to construct

the chain of adjacent period-to-period comparisons, P 1,2 × P 2,3 × · · · × P s−1,s, resulting in a

chained index. An alternative is to make the direct, or fixed-base, comparison P 1,s. In this case,

the comparison of prices in two sequential periods is given by P 1,t+1/P 1,t. A major limitation of

fixed-based indexes arises in contexts with product churn (i.e., the entry and exit of products over

time). In such cases, fixed-base comparisons rely on overlapping products between the base and
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each later period, and the number of such overlapping products can decline sharply over time.6

For this reason, there is broad international consensus that chained indexes are preferable.7

A drawback of chained indexes is that, unlike fixed-base indexes, they can exhibit chain drift.

Suppose all goods are available in each period.8 A chained index is said to satisfy the circular-

ity test if P 1,2 × P 2,3 × P T−1,1 = P 1,T ; i.e., if the chained comparisons between the first and

final period equals the direct comparison between these periods. In general, bilateral chained in-

dexes—including those constructed with the five index numbers defined above—fail this test and

are therefore said to suffer from chain drift. This source of bias can be particularly pronounced

when indexes are constructed using transaction-level data (e.g., Ivancic et al., 2011).

Sources of chain drift. A cost-of-living index measures the expenditure a household requires

to reach a fixed standard of living (Könus, 1924). The economic approach to index numbers

motivates price indexes as approximations (or exact measures) of the cost-of-living index. If the

price index is correctly specified to match consumers’ true preferences, the fixed-base and chained

comparison between two (non-consecutive) periods will coincide; the price index will exhibit no

chain drift. For all commonly used index numbers—that depend only on prices and quantities

(or expenditure shares)—this equivalence requires homothetic preferences. In practice, however,

the conditions required for this exact correspondence rarely hold, leading to deviations between

chained and fixed-base indexes and the emergence of chain drift.

For instance, household preferences are typically not homothetic: as income rises, consumers

tend to increase the share of spending on certain goods—luxuries—and reduce the share allocated

to others—necessities. In such cases, the true cost-of-living index depends on compensated (i.e.,

6For example, the chained comparison P t,t+1 uses data on the set of products available in periods t and t+ 1.
The fixed-base comparison P 1,t+1/P 1,t, instead uses data on the set of products available in both periods 1 and t
(or t+1). With substantial product entry and exit, the set of products available in all periods 1 and t (or t+1) may
comprise only a relatively small share of expenditure compared to those available in periods t and t+1, particularly
as t grows.

7For instance, the ILO (2004) CPI Manual (p. 407) notes: “rapid sample attrition means that fixed-base
indexes rapidly become unrepresentative and hence it seems preferable to use chained indexes which can more
closely follow market-place developments.”

8More precisely, suppose either all goods are available and purchased by households in each period, or that for
goods that are unavailable or not purchased we observe their reservation price.
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utility-constant) budget shares, which are unobserved, rather than the observed shares used in

standard price indexes (Samuelson and Swamy, 1974; Theil, 1976). Preferences may also vary

over time due to seasonal patterns or changes in fashion, which can cause purchases of specific

goods to shift markedly from month to month. Additionally, in practice, aggregate price indexes

are usually constructed using aggregate expenditure weights. However, if households have het-

erogeneous preferences, the resulting index may not align with the true cost-of-living index for

any individual household, even under homotheticity. Another challenge is that price indexes are

based on economic transactions rather than consumption, and the two do not always align. This

issue is particularly pronounced in high-frequency data, due to stockpiling behavior. For example,

when a product goes on sale, consumers may stock up and consume the product in later periods,

reducing spending in those periods even if the price returns to its regular level.9 Finally, when

there is product entry and exit—referred to as churn—the true cost-of-living index depends on

reservation prices (i.e., the maximum price at which a consumer would still purchase the good),

which are unobserved and therefore omitted from standard price indices.

Non-homotheticities, seasonal variation in preferences, aggregation across heterogeneous house-

holds, intertemporal behavior (such as stockpiling), and product churn are all potential reasons

why a price index may fail the circularity test and therefore exhibit chain drift. Chain drift means

the index, when chained, will fail to revert to a previous level when all prices return to the former

level, and that it can drift upward or downward over time in a way disconnected from actual price

changes. In high-frequency indexes, this problem can be especially severe, sometimes rendering

the resulting index effectively unusable.

Dissimilarity chain linking. One approach to minimizing chain drift bias, while retaining

bilateral index number comparisons, is to construct chains across periods that are most similar

in terms of relative price movements. This requires a measure of “dissimilarity” of price lev-

9Diewert (2022) shows, for the case of a Törnqvist index, that chain drift bias arises when changes in spending
shares between two periods are correlated with prices in any other period. This can occur if consumers engage in
stockpiling during sales, causing future spending shares to remain low even as prices revert.
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els between periods.10 Diewert (2022) recommends a “predicted share measure of relative price

dissimilarity” for calculating price indexes in cases with high product churn.11 Hypothetical ex-

penditure shares are constructed using prices in period τ but quantities from period t to “predict”

period t expenditure shares. For any good n, the predicted share is given by

s̃n,t,τ =
pτnq

t
n

pτ ′qt

The predicted share measure of relative price dissimilarity between periods t and τ is then:

∆PS

(
pt, pτ , qt, qτ

)
≡

N∑
n=1

[sn,t − s̃n,t,τ ]
2 +

N∑
n=1

[sn,τ − s̃n,τ,t]
2

This takes values between 0 and 2. It equals 0 if prices in period τ are proportional to prices in

period t (i.e., pτ = λpt for some scalar λ), since then sn,t = s̃n,t,τ and sn,τ = s̃n,τ,t for all n. This

seeks to reduce chain drift by linking periods with the most similar relative prices—i.e., those

closest to proportional price movements. However, as we show in Section 4, this method can still

lead to substantial bias in practice.

2.3 Multilateral index numbers

Another approach to addressing chain drift bias is the use of multilateral index numbers, first

proposed as a solution to chain drift bias by Ivancic et al. (2011).12 A multilateral index computed

over all periods 1, . . . , T is fully transitive, meaning it satisfies the circularity test. A set of

multilateral indexes extend the superlative bilateral indexes defined in Section 2.1—namely, the

Fisher, Törnqvist, and Walsh indexes—and like them are consistent with a flexible representation

of consumer preferences and hence limit substitution bias. They are called the GEKS-Fisher index,

10This approach is also used in the context of international comparisons, where countries are linked based on
similarity of their price structures. See Hill (1999, 2001).

11Diewert (2009) outlines several alternative dissimilarity measures. The novelty of the predicted share measure
is that it penalizes periods with limited product overlap—i.e., when many products are not observed in both periods.
Diewert et al. (2022) provide empirical evidence of its potential effectiveness, particularly for seasonal products.

12Multilateral indexes are typically used in international comparisons, such as the World Bank’s International
Comparisons Program (https://www.worldbank.org/en/programs/icp). They were first suggested in a time series
context by Balk (1981).
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CCDI index and the GEKS-Walsh index respectively.13 The price level in period t is defined as

a geometric mean of the corresponding bilateral index comparing period t with all other periods

τ = 1, . . . , T . Hence, the measured price level in period t under the indexes is given by:

Pt
GEKS−F =

∏
τ

[
P τ,t
F

]1/T Pt
CCDI =

∏
τ

[
P τ,t
T q

]1/T Pt
GEKS−W =

∏
τ

[
P τ,t
W

]1/T
.

The fourth multilateral index number we consider is the Geary-Khamis (GK) index,14 which

differs from the other multilateral indexes in two key respects. First, it is an implicit index, de-

fined as total expenditure divided by a volume (quantity) index. Second, it is not built upon a

superlative bilateral index. Instead, it assumes a linear preference structure in which consumers

regard goods as perfect substitutes. Diewert and Fox (2022) shows that the GK index is also con-

sistent with Leontief—or perfect complements—preferences. That is, it aligns only with extreme

assumptions about consumer behavior.

The GK index is defined implicitly through a set of equations that jointly determine price

levels Pt
GK , for t = 1, . . . , T , and a set of quality adjustment factors bn for each good n = 1, . . . , N .

Letting qn ≡
∑

t q
t
n denote the total quantity of good n across all periods, the N + T equations

that determine the quality adjustment factors and price levels are:

bn =
∑
t

(
qtn
qn

)(
ptn
Pt
GK

)
for n = 1, . . . , N, Pt

GK =
pt′qt

b′qt
for t = 1, . . . , T.

Each adjustment factor bn is a share-weighted average of inflation-adjusted prices for good n over

all periods. The resulting price index in period t is given by total expenditure divided by the sum

of quality-adjusted quantities purchased in that period.15

For each of the multilateral index numbers, it is standard to rebase the price levels relative

to the first period in the data, P 1,t
i = Pt

i/P1
i , for i = GEKS − F,CCDI,GEKS −W,GK. The

13The GEKS indexes are named after Gini (1931), Eltetö and Köves (1964) and Szulc (1964), while the Caves-
Christensen-Diewert-Inklaar (CCDI) index was developed by Caves et al. (1982) and applied to a price index by
Inklaar and Diewert (2016).

14Developed by Geary (1958) and Khamis (1970, 1972).
15The standard approach to solving this system is to iterate between the two equations until convergence.

However, Diewert and Fox (2022) derives a more efficient method, based on an earlier suggestion by Diewert (1999)
(see p. 360, footnote 24).
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comparison of prices between any two adjacent periods, t and t + 1, is then given by the ratio of

their respective price levels: P t,t+1
i = Pt+1

i /Pt
i = P 1,t+1

i /P 1,t
i .

2.4 Spliced price series

Suppose a multilateral index is used to compute price levels over a fixed time period, 1, . . . , T .

When data for period T + 1 becomes available, recomputing the index over 1, . . . , T + 1 will

generally lead to revisions of price levels for the the earlier 1, . . . , T periods. NSIs typically regard

such revisions to past headline CPI levels as undesirable. Linking methods provide a way to

address this issue.

The rolling window splice involves computing a multilateral index over an initial window of

periods t = 1, . . . , T . When data for a new period becomes available, a new index is calculated

over the updated window t = 2, . . . , T +1. The price level for period T +1 from this new sequence

is then linked to the original series using a comparison period common to both windows (typically

period T ). As each new period of data becomes available, a new index is computed over the most

recent T periods, and the resulting price level is spliced onto the existing series. In this approach,

the window length remains fixed at T .

More concretely, suppose we compute a multilateral price series over t = 1, . . . , T , PO =

(P1
O, . . . ,PT

O). For t ≤ T , the price level is ρt =
Pt
O

P1
O
. When data for period T +1 becomes available,

we compute a new multilateral sequence over the periods t = 2, . . . , T + 1, PN = (P2
N , . . . ,PT+1

N ).

The spliced price level for period T + 1 is then:

ρT+1(τ) = ρT (τ)×
PT+1
N /Pτ

N
PT
O/Pτ

O
,

where τ is the period used to link the two index sequences. Different choices of τ correspond to

alternative rolling-window splices: τ = T defines the movement splice (Ivancic et al., 2011); τ = 2

corresponds to the window splice (Krsinich, 2016); and τ = T
2
(or τ = T+1

2
when T is odd) yields

the half splice (de Haan, 2015)
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As each subsequent period of data, t = s + T (for s > 0), becomes available, the most recent

multilateral index sequence of length T , PN ′ = (Pt−T+1
N ′ , . . . ,Pt

N ) is appended to the spliced series

via the preceding period T -length sequence PO′ = (Pt−T
O′ , . . . ,Pt−1

O ) and spliced price level ρt−1(τ).

The updated price level is given by:

ρt+1(τ) = ρt(τ)×
Pt+1
N ′ /Pτ+s

N ′

Pt
O′/Pτ+s

O′
,

Without additional structure on the underlying price and quantity data, there is no compelling

reason for favoring any τ = 2, . . . , T . Rather than selecting one period, the mean splice, developed

by Diewert and Fox (2022), takes a geometric mean over all possible τ . This yields the normalized

price level for calendar time t > T :16

ρt(τ̄) =
T∏

τ=2

(ρt(τ))
1

T−1

A final option that we consider is to select the splicing period using a dissimilarity mea-

sure—such as the predicted share measure of relative price dissimilarity discussed above—by

setting τ = argminτ∈2...T ∆PS

(
pT + 1, pτ , qT + 1, qτ

)
. This approach identifies the splicing period

that is closest to being a proportional price change from the final period of the new window.17 This

form of splicing based on relative price similarity was suggested, but not pursued, by Diewert and

Fox (2022). Our paper presents the first evidence of the empirical performance of dissimilarity-

based splicing for multilateral price indexes. Alternative splicing methods include fixed-base mov-

ing and expanding windows, as well as approaches that splice directly on the published series

(Chessa, 2021).18 We discuss and evaluate these alternatives in the Online Appendix.

16The idea of using a mean splice was originally suggested, but not developed, by Ivancic et al. (2011), footnote
19, p. 33.

17An alternative is to select the splicing period most similar to the final period of the old window, i.e., period T .
In practice, this is likely to yield very similar results when constructing monthly indexes, as in most cases months
T and T + 1 will have similar price structures.

18Melser (2018) proposes a further alternative in which bilateral comparisons in the multilateral index number
formula are weighted—assigning lower weight to comparisons between periods with less product overlap. The
rolling window splice can be interpreted as a special case of this approach, with weights of one for comparisons
within the window and zero for comparisons outside it.
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All of these linking procedures avoid the need to revise past price levels. However, this comes

at the cost of introducing chain drift into the price index. The extent of the resulting bias depends

on the window length, the chosen linking method, and the characteristics of the underlying price

and quantity data. While it plausible a priori that shorter window results in grater bias, the

magnitude of this effect is ultimately an empirical question. Similarly, the relative performance

of different linking methods cannot be determined without empirical investigation. To address

these issues, we compare a multilateral index computed over the full sample period—i.e., a fully

transitive index that does not suffer from chain drift bias—with the same index computed using

each of the linking procedures. The difference between these series provides a direct measure of

the chain drift bias introduced by linking.

3 Scanner data

We use household scanner data from the Kantar FMCG At-Home Purchase Panel. The data cap-

ture purchases of all fast-moving consumer goods (FMCG)—including food, beverages (both alco-

holic and non-alcoholic), toiletries, non-prescription drugs, cleaning products, and pet foods—brought

into the home by a sample of households living in Great Britain (i.e., the UK excluding North-

ern Ireland). Our sample spans the period 2012–2019. Each year, the dataset contains purchase

records from approximately 30,000 households. Households typically remain in the panel for many

consecutive months. Participants record all barcoded purchases using a handheld scanner or mo-

bile phone app. For each transaction, we observe the quantity purchased, expenditure, transaction

price, and barcode-level product characteristics (including product category).19

In total, our data includes approximately 300,000 unique barcodes and over 300 million trans-

action, grouped into product categories. In the analysis that follows, we compute price indexes for

19The combination of transaction-level prices and expenditures, and rich product and household attributes, has
made scanner data a widely used resource in economic and social science researcher (see Dubois et al. (2022)). See
Leicester and Oldfield (2009) for a detailed description of the Kantar data, as well as comparisons with other UK
data sources.

15



each of the 178 product categories that account for at least 0.1% of total spending over 2012–2019.20

We construct monthly price indexes, treating barcodes as the elementary products in the index.

We compute elementary (monthly barcode) prices by dividing the total monthly expenditure on

the barcode by the total monthly quantity sold.21

Our data are household scanner data, meaning they capture transactions recorded by a sample

of households. In contrast, retail scanner (or point-of-sale) data record all sales in a sample of

stores. Both types of data enable near real-time measurement of prices and expenditures across

a broad set fast-moving consumer goods. Each has distinct advantages: retail scanner data may

exhibit less sampling variation if store coverage is comprehensive, while household scanner data

can capture online purchases and support disaggregate inflation analysis by household type (for

instance, see Chen et al. (2025)). In practice, there may be returns from combining both sources

for inflation measurement.22

Traditionally, NSIs collect price data through in-person visits by price collectors and combine

this with household expenditure information from surveys such as the Consumer Expenditure

Survey (CES) in the US and the Living Cost and Food Survey (LCFS) in the UK. These traditional

data sources have several limitations compared to scanner data, and these limitations are reflected

in standard CPI construction methods. First, price quotes are collected for only a narrow subset

of products. Second, expenditure information are not available at the level of individual products,

20A full list of product categories is provided in the Online Appendix. For each product category-year, we
drop transactions with expenditure, volume, or unit value in the top or bottom percentile. This trimming has no
substantive effect on our results.

21In other words, we use monthly unit values as the prices for index construction. This approach does not
distinguish between variation in product availability across different regions of the UK. However, the major UK
supermarkets have national store coverage and pricing policies, meaning such regional variation is likely to be small.
Diewert et al. (2016) show that unit values should be calculated at the same frequency as the desired index to avoid
an upward bias.

22Both household and retail scanner data can face challenges arising from product relaunches. For example,
if a product is withdrawn and reintroduced with a changed characteristic—such as a different package size—it is
typically assigned a new barcode. As a result, the associated price change is not captured when using product
identifiers like barcodes. This issue has been explored in the context of multilateral indexes by, e.g., Van Loon
et al. (2023). A key difficulty lies in detecting relaunches when product characteristic data are limited, as is the
case in our dataset. However, relaunches are generally considered more problematic for product categories such as
fashion and consumer electronics than for the types of goods examined here.
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but only for broad product categories—similar to the product categories in our scanner data.23

Third, the expenditure information are available with a significant lag, often a year or more.

As a result, CPIs traditionally rely on unweighted averages of a small number of price quotes

to estimate product category-level prices, which are then combined using historical expenditure

weights. By contrast, large scanner datasets offer several advantages, including broader coverage,

more timely and disaggregate expenditure data, and the ability to compute prices at the product

level—provided the issue of chain drift can be effectively addressed.24

4 Comparing bilateral and multilateral indexes

One approach to calculating month-to-month price indexes using high-frequency data is to use a

fixed-base Laspeyres index. Like traditional CPIs, this index uses historical spending weights.25

When implemented with scanner data, however, the index can leverage detailed product-level

prices and weights, covering thousands of items—an advantage over traditional approaches based

on limited price quotes. Figure 4.1 plots the evolution of a fixed-base, month-to-month Laspeyres

index for all fast-moving consumer goods over the period 2012-2019. The figure also plots the

fixed-base superlative Törnqvist and Fisher indexes. We omit the Walsh index, as its path closely

mirrors the Törnqvist index. These indexes are computed over products available in each month

of the period 2012-2019.

The superlative indexes show substantially different price changes compared to the Laspeyres

index, highlighting the presence of substitution bias in the latter. By the end of the first year,

the Laspeyres index is around five percentage points higher than the superlative indexes—a gap

23Implicit expenditure weights for more disaggregated items do influence index construction through sample
selection, but this selection is typically updated only infrequently.

24In explaining their move toward multilateral methods for CPI construction, the Australian Bureau of Statistics
(2017) noted “The advent of readily available transaction level data then allows for an overhaul of traditional
methodology, as the data constraint has been enormously relaxed. However, this opportunity for improved price
index construction has been somewhat offset by the complexities involved in the use of high-frequency data.”

25Most NSIs use a Laspeyres-type index for CPI construction, specifically the Lowe (1823) index. In this case,
the quantity weights are typically from a period prior to the price comparison, usually from the most recent
expenditure survey or from an imputed update of those weights.
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that persists throughout the remainder of the sample period. In the first half of data, the Fisher

index displays notably more volatility than the Törnqvist and Walsh indexes. This pattern recurs

in our broader results, including for the multilateral extensions of these indexes, and reflects the

Fisher index’s sensitivity to outlier price observations.

Figure 4.1: Fixed-base Laspeyres and superlative indexes
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Note: Figure shows index number values for the Laspeyers, Törnqvist and Fished fixed base indexes. We omit the
Walsh index as it is very similar to the Törnqvist index. Indexes are computed over all fast-moving consumer goods.

All fixed-base indexes of this kind, whether superlative or not, risk becoming increasingly

unrepresentative of consumer spending, as product availability evolves across seasons and over

years. Figure B.1 in the Online Appendix shows the distribution of the share of spending in

December 2019, across 178 product categories, that went to products also purchased in January

2012. The figure highlights significant product churn. In the median product category, only 32%

of spending in December 2019 was on items with positive spending in January 2012.26 Product

churn on this measure is especially high in categories such as moist wipes, machine wash products,

cat food, and fresh bacon joints.

Chained indexes help address product churn by requiring only that products be available in

the two periods compared in each bilateral link of the chain, while allowing index weights to re-

flect current spending patterns. However, as discussed in Section 2.2, chained bilateral indexes

26This is also equal to the weighted mean share, i.e., the share of overall spending on items across all product
categories that were bought in January 2012.
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constructed with high-frequency data can suffer from substantial chain drift. Figure 4.2(a) plots

values for three indexes: a fixed-base Törnqvist index, a month-to-month (or period-to-period)

chained Törnqvist index, and the CCDI index—the multilateral analogue of the Törnqvist in-

dex—defined in Section 2.3. We compute all three indexes using all fast-moving consumer goods.

We include equivalent graphs for the Fisher and Walsh indexes, which show similar patterns, in

the Online Appendix.

Figure 4.2(a) shows that chain drift is a significant problem for the Törnqvist index. By the

end of the sample period, the chained Törnqvist index is 19 percentage points (ppt) lower than

the fixed-base index, and 18 ppt lower than the multilateral CCDI index. In contrast, the CCDI

index is much closer in value to fixed-base index than the chained Törnqvist index.

Panel (b) of Figure 4.2 replicates this comparison using quarterly indexes. The quarterly

CCDI and fixed-base Törnqvist index resemble their monthly counterparts, though they smooth

over short-term month-to-month variation. The divergence between the chained Törnqvist and

the other two indexes is smaller at the quarterly frequency, but the chained index still records

considerably lower cumulative inflation.

The monthly chained Törnqvist index for all items falls by 16 ppt over the full period—an

implausibly large decline. Figure B.3 in the Online Appendix shows the distribution of cumulative

price changes across all 178 product categories. The chain drift problem is even more pronounced:

ten categories record price changes of less than -50%, while nine record increases of more than

20%.

Compared with the fixed-base Törnqvist index, the CCDI index has the advantage of not

requiring products to be present in a single base period. As a result, it remains more representative

of consumer spending over time. Nonetheless, Figure 4.2 shows that over 2012–2019 the CCDI

and fixed-base Törnqvist indexes yield a similar picture of inflation in fast-moving consumer good

inflation. However, in general, this need not be the case.
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Figure 4.2: Chain drift bias: CCDI vs bilateral Törnqvists

(a) Monthly index
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(b) Quarterly index
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Note: Figures show index number values for the CCDI multilateral index, the Törnqvist fixed base index and a
monthly chained Törnqvist index. The indexes are calculated across all fast-moving consumer goods.

Panel (a) of Figure 4.3 compares the distribution of differences between the final-period values

of the CCDI index and three alternative Törnqvist indexes: a period-on-period chained index,

a chained index using the predicted share dissimilarity method, and a fixed-base index. Each

distribution is shown as a box plot, where the box represents the interquartile range, the line

marks the median, and the whiskers extend to 1.5 times the interquartile range below and above

the box. Outliers beyond this range are plotted individually.

Comparing the CCDI with the chained Törnqvist index suggests that chain drift is negative

for most products. When the Törnqvist index is chained using the standard period-on-period

approach, 22 out of 178 product categories exhibit positive chain drift bias.27 Differences between

the CCDI and the Törnqvist index chained using the dissimilarity index are smaller, but still

substantial. The median average monthly difference for the dissimilarity-chained Törnqvist index

is -0.09 ppt, compared to -0.13 ppt for the period-on-period chained Törnqvist index.

The differences between the CCDI and the fixed-base Törnqvist index are smaller than those

for the chained indexes, but in some cases, they remain substantial. These cases typically involve

27Notably, fresh fruits account for three of the four product categories with the highest positive chain drift bias:
citrus fruits, apples, chilled breads, and pears.
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product categories with a high degree of product churn, reflecting bias introduced as the fixed-base

index becomes increasingly unrepresentative over time.

Figure 4.3: Average monthly difference between CCDI and bilateral Törnqvist indexes by product
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(b) Differences with chained index (period on
period)
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Note: In panel (a), each box plot summarizes the distribution (across product categories) of differences in average
monthly inflation rates between the CCDI index calculated over the whole period and i) a bilateral Törnqvist chained
period-on-period ii) a bilateral Törnqvist chained using the predicted share dissimilarity approach and iii) a fixed-base
Törnqvist. In panel (b), each box plot summarizes the distribution of differences in average monthly inflation rates
between the period-on-period chained index bilateral Törnqvist, and i) a CCDI index calculated over the whole period
ii) a bilateral Törnqvist chained using the predicted share dissimilarity approach and iii) a fixed-base Törnqvist. We
exclude outliers (the three products with the largest positive and three largest negative amounts of chain drift bias)
from each plot.

Differences between the CCDI index and the index chained using the dissimilarity approach

could, in principle, reflect biases with either index. Panel (b) of Figure 4.3 shows the differences

between the period-on-period chained Törnqvist index and the alternative approaches. It shows

that the dissimilarity-based chaining yields results that are generally very similar to period-on-

period chaining, which, as discussed, tends to imply implausible index changes.

Closer inspection of the dissimilarity-based chaining approach reveals that, in many cases, the

most similar period—according to the dissimilarity measure—is the immediately preceding one.

As a result, this method often yields outcomes similar to standard period-on-period chaining. To

illustrate this, Figure B.4 in the Online Appendix plots the time paths of the different indexes for a

specific product category: Chocolate and Confectionery. This category exhibits particularly high
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chain drift bias—recording the second-largest difference between the CCDI index (or the fixed-

base index) and the chained Törnqvist—and also shows one of the largest reductions in chain drift

bias when using the dissimilarity approach relative to the period-on-period method. Despite this,

the reduction remains modest. From 2012 to 2016, the dissimilarity-chained index closely tracks

the period-on-period Törnqvist index, as both rely on the same chaining periods. It is only from

2016 onward, when a different reference period is selected, that the two indexes begin to diverge.

Figure B.4 also shows that while the fixed-base index yields a final value similar to the CCDI, its

trajectory over time is substantially more volatile—reflecting the high degree of seasonal product

churn in this category.

4.1 Different multilateral indexes

In this section, we quantify the difference in measured inflation across the four multilateral price

indexes discussed in Section 2.3—the CCDI, GEKS-Fisher, GEKS-Walsh and GK indexes. For

each index and product category, we compute a price index spanning the full sample period, i.e.,

all 96 year-months of data. Because this calculation does not entail any linking, the resulting

indexes are free from chain drift. To summarize inflation differences, we calculate, for each of the

GEKS-Fisher, GEKS-Walsh, and GK indexes, the difference in average monthly price changes (up

to December 2019) relative to the CCDI index.28 These differences form three distributions—one

for each index comparison—which we present as box plots in Figure 4.4.

The differences between the GEKS-Fisher and GEKS-Walsh indexes and the CCDI index in

the final period are small for the vast majority of product categories, which is perhaps unsurpris-

ing given that the bilateral forms of these indexes approximate each other to the second order.

However, for a few categories, the difference is substantial. For example, the GEKS-Fisher index

reports an average monthly inflation rate 0.5 ppt lower than the CCDI index for chilled flavored

milk, and 0.11 ppt lower for ambient cakes and pastries. When cumulated over the full 96-months,

28The average monthly inflation rate for a given index over the 96 months is calculated as x
1
95 − 1 where x is

the final period value of the index.
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these gaps translate into final period index differences of 31 ppt and 13 ppt, respectively. The

GEKS-Walsh index also yields lower inflation rates for these items than the CCDI, with differ-

ences of 0.22 ppt and 0.02 ppt, respectively. Conversely, the GEKS-Fisher index records an average

monthly inflation rate that is 0.11 ppt higher than the CCDI index for other vegetables, while the

GEKS-Walsh shows a smaller but still positive difference of 0.02 ppt for the same category.

Figure 4.4: Average monthly inflation rates relative to CCDI index
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Note: Each box plot summarizes the distribution (across product categories) of differences in average monthly
inflation rates between the index named in the horizontal axis and the CCDI index. Indexes are calculated using all
96 year-months of data.

These occasional differences between the CCDI and the other GEKS indexes appear to stem

from anomalously large price and quantity changes for specific items occurring in a single month,

which then have a persistent effect on the cumulative index. In such cases, because expenditure

shares change less than the underlying quantities and prices, the CCDI is less affected than the

quantity-based GEKS-Fisher and GEKS-Walsh indexes. This suggests that the CCDI may be less

sensitive to certain extreme values.29

29For example, in the case of chilled flavored milk, the CCDI index falls by 2.5% in a single month, while the
GEKS-Walsh index drops by 7%, and the GEKS-Fisher index by an implausible 43%. This accounts for most of
the difference in their final index values. Closer inspection indicates that this was due to a sharp change in recorded
quantities for three products—possibly the result of a change in units of measurement—while expenditure levels
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The differences in average monthly inflation rates between the GK and CCDI indexes are

generally larger than those observed between the CCDI and either the GEKS-Fisher or GEKS-

Walsh indexes. The interquartile range of differences for the GK index spans from -0.01 ppt to

0.02 ppt, compared to narrower ranges of -0.002 to 0.002 ppt for the GEKS-Fisher and -0.004

to 0.003 for the GEKS-Walsh. The GK index also registers a significantly higher price increase

for chilled flavoured milk relative to the CCDI index—by contrast to the GEKS indexes, which

record substantially lower inflation for this category. Specifically, the GK index reports an average

monthly inflation rate that is 0.2 ppt higher than the CCDI index.

Our analysis suggests that the CCDI index compares favorably to the other multilateral indexes

considered for measuring inflation using high-frequency data. The most pronounced advantage is

over the GK index: while the CCDI and other GEKS-type indexes tend to produce similar results,

the GK index often diverges. This is perhaps unsurprising, as the GK index is not based on a

superlative bilateral index and instead is consistent with unrealistic assumptions about consumer

preferences. The case for preferring the CCDI index over the other GEKS-type indexes is more

nuanced, but our findings indicate that the CCDI index is less sensitive to large outliers. NSIs

might therefore prefer the CCDI as it is more robust to anomalous price changes that could be

measurement errors.

In practice, however, NSIs cannot use multilateral indexes calculated over the full sample

periods for headline CPIs, as doing so would require revising historical values whenever new data

become available. Hence, we next examine rolling-window implementations of these indexes, which

introduce an additional layer of complexity: outcomes now depend not only on the index number

formula but also on the linking method used to splice together successive windows.

remained relatively stable. As a share-weighted index, the CCDI was much less sensitive to these changes than the
quantity-based GEKS-Fisher and GEKS-Walsh indexes.
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5 Chain drift bias in spliced indexes

In this section, we quantify the chain drift bias resulting from different linking procedures used

to extend multilateral indexes, as discussed in Section 2.4. We also examine how chain drift bias

varies with different window lengths used in rolling-windows methods. To do this, we compare

the average monthly inflation rates from spliced indexes for each multilateral index number with

those from the non-spliced series, which is computed using all 96 year-months of data. Since the

non-spliced series is fully transitive, it is free from chain drift, providing a direct measure of chain

drift bias in the spliced series. We undertake this comparison for each product category across the

CCDI, GEKS-Fisher, GEKS-Walsh, and GK index numbers.

5.1 Splicing methods

We first fix the window length at 25 months and compare different linking methods: the window,

half, movement, and mean splices. Additionally, we use the predicted share measure of relative

price dissimilarity to select the splicing period. Further results, including those using the half-

splice on the published series, fixed-base expanding window and fixed-base moving window, are

reported alongside the mean splice in the Online Appendix.

Figure 5.1 presents boxplots summarizing the distribution of differences between spliced indexes

and the non-spliced index (which uses all periods of data) across product categories. Each of the

four panels corresponds to a different multilateral index number, and each boxplot within a panel

represents a different splicing method. Some product categories exhibit a very high degree of chain

drift bias. To make the plots easier to read, we exclude these extreme cases by removing the three

product categories with the largest positive values of chain drift, as well as the three with the

largest negative values, from each plot.
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Figure 5.1: Chain drift bias with different splicing methods (25 month window)
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(b) GEKS-Fisher
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(c) GEKS-Walsh
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(d) GK
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Note: Each box plot summarizes the distribution (across product categories) of differences in average monthly
inflation between the spliced index (over a 25 month window) using the linking method named in the horizontal axis
and the corresponding non-spliced index. We exclude the products with the three largest positive and negative values
for chain drift in each plot.

Panel (a) shows that the distribution of chain drift is relatively stable across different splicing

methods for the CCDI index. For each method, just under three-quarters of product categories

exhibit negative chain drift bias, with the remainder showing positive bias. The median bias

ranges from -0.02 ppt with the movement splice to -0.01 ppt with the mean and half splices, while

the interquartile range of biases spans from 0.04 to 0.05 ppt. The median chain drift bias with

the mean splice implies a cumulative 1.3 ppt difference between the spliced and non-spliced index

by the final period.
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Panels (b) and (c) show similar results for the GEKS-Walsh and GEKS-Fisher indexes, with

chain drift bias patterns closely resembling those for the CCDI index. However, extreme cases of

chain drift bias are more common for the GEKS-Fisher index.

Panel (d) shows that the GK index is more sensitive to the choice of linking method than the

CCDI or GEKS indexes. In particular, the movement splice results in a larger degree of chain

drift bias for the GK index than for the other multilateral index numbers. The median monthly

chain drift bias for the movement splice is -0.06 ppt, much greater than for the other splicing

methods. The window splice also leads to greater dispersion in chain drift bias under the GK

index compared to other indexes. In addition, the most extreme outliers (not shown in the plots)

are much higher for the GK index. For instance, seasonal biscuits have a chain drift bias of -0.99

ppt per month with the window splice and -0.64 ppt with the movement splice.30

Figure 5.1 provides the first empirical evidence on the use of the predicted share dissimilarity

method for splicing rolling-window multilateral indexes. In the first three panels, its performance

is very similar to the other methods. These results are more encouraging than for its use in

chaining bilateral indexes; see Figure 4.3 in Section 4.

Overall, our findings suggest that the CCDI and GEKS indexes are robust to the choice of

extension method, as the distribution of chain drift bias is similar across these methods. In

contrast, the GK index is more sensitive to the extension method, with the half and mean splice

yielding the best results. The mean splice avoids the risk of linking solely on a period that may

happen to exhibit unusual spending and price patterns, a potential issue with the window, half

and movement splicing methods. The predicted share dissimilarity method, however, is less user-

friendly because the linking period is not known ex ante and varies between pairs of windows being

linked, making it harder to explain to users. Considering both the empirical evidence in Figure 5.1

and these practical considerations, the mean splice seems to be the preferred choice.

30The index for seasonal biscuits also exhibits some chain drift when calculated using the CCDI index, but the
bias is much smaller: -0.05 ppt with the window splice and -0.06 ppt with the movement splice. Using the mean or
half splice mitigates the extreme chain drift bias for this product category with the GK index: the biases are -0.28
ppt with the mean splice and -0.16 ppt with the half splice.
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5.2 Drivers of chain drift bias

The results from the previous section emphasize the importance of using relatively long window

lengths for spliced multilateral index numbers to minimize chain drift bias. In the section, we

assess the circumstances under which chain drift bias is likely be a significant issue. Specifically,

we consider how chain drift bias at different window lengths relates to five potential drivers, each

measured separately for each product category. Monthly churn: This is the share of spending on

products in the current month that were not observed being purchased in the previous month.31

Annual churn: This is the share of spending on products in the current year that were not observed

being purchased in the previous year. Run-out sales at the end of product life-cycles have been

identified as a potential cause of chain drift (Melser and Webster, 2021). Seasonality in pricing

(‘weak seasonality’): We measure this by estimating a regression of log price on product fixed

effects and month dummies for each product category. We measure the degree of seasonality as

the difference between the largest and smallest month dummy coefficients. The frequency of price

promotions: This refers to the percentage of transactions each year that involve price promotions.

The frequency of quantity promotions: This refers to the percentage of transactions each year that

involve quantity promotions, such as two-for-one offers.

Table B.6 in the Online Appendix shows the distribution of these measures across product

categories. Monthly churn is highest for the category seasonal biscuits, with an average of 14.6%

of spending each month directed toward products not purchased in the previous month. This

category also exhibits the highest annual churn and seasonal pricing. Annual churn is notably

high for products like chocolate and air fresheners, while monthly churn is more prominent for

seasonal categories like vitamins, minerals and skincare. Apart from seasonal biscuits, seasonal

pricing is significant for soft fruits and fortified wines. Price promotions are most prevalent in ‘mini

31Multilateral methods such as the GEKS-type indexes rely on there being some degree of product overlap for
every pair of months considered. A lack of matching can cause the resulting indexes to be unreliable. Diewert
and Shimizu (2023) show that product churn can be a particular problem with some high-tech products, such as
laptops.
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portions’ of dairy products and healthy biscuits, while quantity promotions are most common for

fresh pasta and chilled processed poultry.

We assess the role these factors play in driving chain drift bias through the following analysis.

For each multilateral index number, we calculate the absolute value of the cumulative chain drift

bias over all 96 months for a spliced series (using the mean splice) computed with a 25-month

rolling window. We then regress this measure on each of the potential drivers of chain drift

bias described above.32 Each observation in the regression corresponds to a product category

(excluding the three categories with the highest levels of chain drift bias). We also report results

using a 7-month window in Table B.7 in the Online Appendix. These results suggest that pricing

seasonality plays a more important role in driving chain drift bias when shorter window lengths are

used—likely because such windows that do not span at least 13 months do not allow like-for-like

comparisons of prices at the same point in the seasonal cycle.

Table 5.1 shows that the effects of seasonal pricing and promotions are small and statistically

insignificant. Instead, higher rates of product churn emerge as the main determinant of chain drift

bias. For the CCDI, GEKS-Fisher, and GEKS-Walsh indexes, each percentage point increase in

annual churn is associated with a 0.15 to 0.17 percentage point increase in chain drift bias—a

sizeable effect, given the relatively low overall bias at a 25-month window length. The GK index

stands out as an exception. Unlike the other indexes, it is more sensitive to monthly churn than

to annual churn. Each percentage point increase in annual churn is associated with a 0.06 ppt

increase in chain drift bias for the GK, while each percentage point increase in monthly churn

is associated with a 0.11 ppt increase—although the estimates for monthly churn are imprecise.

The results suggest that product churn is a key determinant of chain drift bias. For the CCDI

index spliced using a 25-month window, monthly and annual churn together account for 88% of

the total explained variance in chain drift bias. Longer window lengths mitigate the impact of

32We weight the regressions by the number of goods in each product category, to account for sampling uncertainty
in the right-hand-side variables and potential heteroskedasticity. Results estimated using unweighted OLS are very
similar.
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annual churn and seasonal prices on the CCDI and GEKS indexes. In contrast, high-frequency

churn (at the monthly level) poses a particular challenge for the GK index.

Table 5.1: Determinants of chain drift bias (25 month window length)

CCDI GEKS-Fisher GEKS-Walsh GK

Monthly churn 0.050 0.055 −0.012 0.116
(0.130) (0.142) (0.124) (0.084)

Annual churn 0.166∗∗∗ 0.171∗∗∗ 0.149∗∗∗ 0.068∗∗

(0.051) (0.055) (0.048) (0.034)

Pricing seasonality 0.010 0.028 0.008 −0.038
(0.050) (0.055) (0.048) (0.033)

Price promotions −0.0004 −0.012 0.003 −0.024
(0.028) (0.031) (0.027) (0.018)

Quantity promotions −0.029 −0.041∗∗ −0.035∗ −0.003
(0.019) (0.021) (0.018) (0.012)

Observations 175 175 175 175
R2 0.127 0.122 0.101 0.072

Note: All indexes are extended using the mean splice. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The regressions are weighted
using the square root of the average number of observations in each calendar month for each product category.

6 Conclusions

Accurate and timely inflation measurement is essential for effective design and implementation

of economic policy—particularly in times of high and volatile inflation. The growing availability

of transaction-level data offers the potential to construct inflation measures at high frequencies,

enabling faster collection, compilation, and publication of CPIs, and drawing on a richer set of

underlying information than traditional methods. A range of approaches for utilizing such data

have been proposed—and, in some cases, adopted—by NSIs. However, to date there is a lack of

systematic empirical evidence comparing these methods. Such comparisons are crucial, as different

index number formulae and extension methods can yield materially different results.
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In this paper, we help fill this evidence gap by providing systematic, quantitative comparisons

of competing methods for measuring month-to-month inflation using long-run transaction-level

scanner data. Our analysis covers 178 product categories within the fast-moving consumer good

segment of the economy. We include in our comparisons a number of proposed methods that, until

now, have seem limited or no empirical applications.

We find that, among the methods examined, the CCDI multilateral index—implemented with

a 25-month rolling window and mean splice linking—performs particularly well. In addition, we

provide novel evidence on the determinants of chain drift bias in spliced multilateral indexes. Our

results highlight product churn as a key driver of chain drift bias.

There are several potential avenues for future research. One important question concerns the

variation in chain drift bias across months within a given index series. While our analysis focuses

on the average monthly chain drift bias over a long time period, the month-to-month variability of

the bias, and how this varies across low and high inflation environments, also affects the reliability

of multilateral indexes for real-time inflation measurement. Future work could also explore the

role of disappearing products in shaping index behavior, as well as the effectiveness of imputation

methods for handling temporarily missing products.
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Appendix:
For online publication

Inflation measurement with high-frequency data

Kevin J. Fox, Peter Levell, Martin O’Connell

July, 2025

A Alternative splicing approaches

In this appendix we describe and evaluate several alternative splicing methods (in particular

splicing on the published series, the fixed-base moving window and fixed-base expanding window)

that have been proposed in the literature.

Slicing on the published series. An alternative to the rolling window splice is to splice on

the published series. In particular, when a new data point in period t = s+ T becomes available,

the corresponding new sequence P = (Pt−T+1, . . . ,Pt) can be directly spliced onto the published

series ρ1, . . . , ρt−1. Let τ be the link period (e.g., the movement, window, or half splice), then the

price level for period t+ 1 is given by:

ρt+1(τ) = ρτ+s(τ)
Pt+1

Pτ+s

Chessa (2021) suggests implementing this method with the half splice.

The fixed-base moving window. An alternative to the rolling window approach is to link

the current price level, computed on the most recent multilateral sequence, with the spliced series

based on a period that is fixed in calendar (rather than relative) time. This is known as the

fixed-base moving window (FBMW). Denote by t a link period defined in calendar time. Under
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the FMBW, the spliced price level in period t is given by:

ρt = ρt
Pt
t

Pt

t

,

The fixed-base expanding window. The fixed-base expanding window (FBEW), is similar

to the fixed-based moving window, but rather than each multilateral sequence being of T periods

long, it expands the window each period to include the latest period of data.

For example, with monthly data, and a December base month, the window used to compute

the new data point in January includes only December and January. In February, it will include

December, January and February, and so on until it includes all months in a given window.

Figure A.1 shown plots the distribution of monthly chain drift biases associated with the

half-splice on the published series, FBEW and FBMW approaches.
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Figure A.1: Chain drift bias with different splicing methods (25 month window)
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(b) GEKS-Fisher
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(c) GEKS-Walsh
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(d) GK
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Note: Each box plot summarizes the distribution (across product categories) of differences in average monthly
inflation between the spliced index (over a 25 month window) using the linking method named in the horizontal axis
and the corresponding non-spliced index. We exclude the products with the three largest positive and negative values
for chain drift in each plot.
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B Additional Figures and tables

Table B.1: Product categories (1)

Annual spending
share (%)

mean min max

Bakery
Ambient Cakes and Pastries 1.45 1.40 1.52
Morning Goods 1.62 1.49 1.76
Total Bread 1.74 1.59 2.04
Chilled Breads 0.16 0.14 0.17
Chilled Cakes 0.33 0.29 0.35
Dairy
Butter 0.85 0.74 1.02
Cheddar 1.59 1.51 1.70
Continental Ex.Blue 0.49 0.39 0.56
Eggs 0.84 0.78 0.88
Fresh Cream 0.34 0.32 0.38
Fromage Frais 0.28 0.16 0.34
Margarine 0.64 0.52 0.85
Mini Portions 0.13 0.11 0.16
Semi-skimmed milk 1.42 1.33 1.50
Skimmed milk 0.37 0.35 0.40
Territorials Ex.Blue 0.23 0.21 0.25
Total Milk 0.51 0.48 0.60
Total Processed 0.34 0.33 0.36
Total Soft White 0.24 0.23 0.25
Whole milk 0.64 0.59 0.71
Yoghurt 1.63 1.58 1.65
Yoghurt Drinks And Juices 0.29 0.28 0.32
Fresh fruit and vegetables
Apples 0.84 0.80 0.86
Bananas 0.60 0.57 0.63
Brassicas 0.61 0.58 0.67
Chilled Prepared Fruit and Veg 0.95 0.82 1.05
Citrus 0.76 0.71 0.83
Legumes 0.21 0.18 0.23
Nuts - fruit 0.22 0.14 0.28
Other Vegetables 0.89 0.80 0.95
Pears 0.22 0.19 0.24
Potatoes 1.20 1.02 1.48
Root Crops 0.84 0.76 0.95
Salads 1.78 1.66 1.91
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Table B.2: Product categories (2)

Annual spending
share (%)

mean min max

Soft Fruit 2.25 1.88 2.55
Tropical Fruits 0.49 0.40 0.55
Fresh meat and fish
Chilled Prepared Fish 0.20 0.17 0.24
Shellfish 0.19 0.18 0.22
Wet/Smoked Fish 0.87 0.75 0.97
Chilled Burgers and Grills 0.28 0.23 0.32
Chld Frnkfurter/Cont Ssgs 0.15 0.13 0.16
Fresh Bacon Joint 0.25 0.23 0.26
Fresh Bacon Rashers 0.95 0.87 1.03
Fresh Bacon Steaks 0.13 0.12 0.15
Fresh Beef 2.17 2.07 2.26
Fresh Flavoured Meats 0.15 0.13 0.16
Fresh Lamb 0.53 0.48 0.57
Fresh Pork 0.78 0.67 0.88
Fresh Sausages 0.70 0.68 0.74
Chilled Processed Poultry 0.38 0.32 0.43
Cooked Poultry 0.51 0.48 0.54
Fresh Poultry 2.31 2.26 2.34
Chilled prepared
Chilled Desserts 0.69 0.66 0.71
Chilled Dips 0.18 0.14 0.22
Chilled Pizza and Bases 0.52 0.47 0.55
Chilled Prepared Salad 0.32 0.28 0.35
Chilled Ready Meals 2.53 2.21 2.77
Chld Sandwich Fillers 0.13 0.12 0.15
Cooked Meats 2.34 2.24 2.47
Fresh Pasta 0.16 0.13 0.17
Fresh Soup 0.11 0.10 0.12
Other Chilled Convenience 0.28 0.21 0.31
Fresh Meat and Veg Pastry 0.97 0.89 1.01
Frozen meat
Frozen Fish 0.95 0.90 0.99
Frozen Sausages 0.11 0.09 0.11
Frozen Poultry 0.39 0.33 0.44
Frozen Meat Products 0.18 0.16 0.20
Frozen Pizzas 0.57 0.51 0.63
Frozen Potato Products 0.85 0.82 0.89
Frozen Processed Poultry 0.53 0.49 0.56
Frozen Ready Meals 0.77 0.73 0.84
Frozen Savoury Bakery 0.22 0.21 0.23
Frozen Vegetables 0.59 0.58 0.62
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Table B.3: Product categories (3)

Annual spending
share (%)

mean min max

Frozen Vegetarian Prods 0.22 0.19 0.26
Other Frozen Foods 0.16 0.15 0.18
Cupboard ingredients
Ambient Soup 0.35 0.31 0.40
Baked Bean 0.41 0.38 0.46
Canned Fish 0.56 0.54 0.59
Canned Hot Meats 0.18 0.15 0.21
Canned Pasta Products 0.12 0.10 0.15
Canned Vegetables 0.13 0.13 0.14
Cold Canned Meats 0.14 0.12 0.16
Prepared Peas and Beans 0.15 0.15 0.16
Tinned Fruit 0.17 0.16 0.18
Tomato Products 0.27 0.27 0.28
Food Drinks 0.21 0.18 0.22
Instant Coffee 0.91 0.88 0.98
Liquid/Grnd Coffee and Beans 0.39 0.26 0.48
Tea 0.54 0.49 0.61
Breakfast Cereals 1.89 1.72 2.09
Honey 0.11 0.10 0.11
Preserves 0.16 0.15 0.18
Ambnt Salad Accompanimet 0.28 0.27 0.29
Sour and Speciality Pickles 0.13 0.13 0.13
Table Sauces 0.30 0.29 0.31
Ambient Rice and Svry Noodles 0.58 0.57 0.59
Dry Pasta 0.25 0.22 0.27
Instant Hot Snacks 0.15 0.13 0.18
Packet Soup 0.13 0.10 0.15
Ambient Cooking Sauces 0.84 0.73 0.96
Cooking Oils 0.36 0.34 0.37
Ethnic Ingredients 0.22 0.20 0.24
Flour 0.12 0.10 0.14
Herbs and Spices 0.20 0.18 0.22
Meat Extract 0.40 0.39 0.42
Home Baking 0.52 0.48 0.55
Sugar 0.30 0.24 0.42
Confectionery
Cereal and Fruit Bars 0.38 0.36 0.41
Childrens Biscuits 0.15 0.14 0.16
Chocolate Biscuit Bars 0.44 0.40 0.47
Confectionery and Other Exclusions 0.19 0.18 0.21
Crackers and Crispbreads 0.37 0.35 0.38
Everyday Biscuits 0.34 0.31 0.37
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Table B.4: Product categories (4)

Annual spending
share (%)

mean min max

Everyday Treats 0.40 0.37 0.42
Healthier Biscuits 0.24 0.21 0.25
Savoury Biscuits 0.15 0.13 0.18
Seasonal Biscuits 0.13 0.12 0.14
Special Treats 0.16 0.14 0.17
Frozen Confectionery 0.35 0.32 0.40
Total Ice Cream 1.03 0.94 1.16
Chocolate Confectionery 2.47 2.38 2.60
Sugar Confectionery 0.74 0.72 0.75
Crisps 1.00 0.96 1.07
Nuts - savoury 0.26 0.23 0.28
Savoury Snacks 1.03 0.95 1.14
Drinks
Chilled Flavoured Milk 0.12 0.11 0.13
Chilled Fruit Juice and Drink 0.71 0.63 0.79
Ambient One Shot Drinks 0.37 0.29 0.43
Ambiennt Fruit Yoghurt Drinks 0.39 0.30 0.51
Bottled Colas 0.56 0.52 0.61
Bottled Lemonade 0.11 0.09 0.14
Bottled Other Flavours 0.43 0.41 0.47
Canned Colas 0.53 0.49 0.60
Canned Other Flavours 0.27 0.24 0.31
Mineral Water 0.45 0.35 0.53
Total Fruit Squash 0.60 0.56 0.65
Alcohol
Beer and Lager 1.68 1.63 1.76
Cider 0.54 0.52 0.57
Fabs 0.12 0.10 0.13
Fortified Wines 0.23 0.19 0.26
Sparkling Wine 0.46 0.33 0.54
Spirits 2.51 2.32 2.76
Wine 3.26 3.21 3.34
Household goods
Bath and Shower Products 0.41 0.39 0.42
Deodorants 0.46 0.42 0.50
Liquid Soap 0.16 0.15 0.17
Skincare 0.58 0.55 0.64
Hair Colourants 0.18 0.15 0.20
Hair Conditioners 0.20 0.19 0.21
Shampoo 0.33 0.32 0.34
Oral Analgesics 0.20 0.19 0.23
Vitamins.Minerals/splmnts 0.35 0.32 0.37
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Table B.5: Product categories (5)

Annual spending
share (%)

mean min max

Air Fresheners 0.36 0.33 0.39
Batteries 0.25 0.24 0.26
Bin Liners 0.18 0.16 0.21
Bleaches and Lavatory Cleaners 0.28 0.27 0.30
Cleaning Accessories 0.14 0.13 0.15
Fabric Conditioners 0.43 0.36 0.47
Facial Tissues 0.25 0.25 0.26
Household Cleaners 0.42 0.41 0.43
Household Food Wraps 0.24 0.24 0.25
Kitchen Towels 0.40 0.38 0.40
Machine Wash Products 0.99 0.87 1.09
Toilet Tissues 1.29 1.25 1.34
Wash Additives 0.12 0.11 0.14
Washing Up Products 0.51 0.46 0.54
Mouthwashes 0.18 0.16 0.19
ToothPastes 0.39 0.38 0.40
Total Toothbrushes 0.20 0.18 0.21
Feminine Care 0.23 0.20 0.25
Incontinence Products 0.11 0.07 0.16
Moist Wipes 0.20 0.15 0.25
Razor Blades 0.21 0.17 0.25
Cat Litter 0.16 0.15 0.16
Cat and Dog Treats 0.55 0.47 0.62
Dog Food 0.56 0.53 0.60
Total Cat Food inc.Bulk 1.42 1.31 1.50
Total Dry Dog Food 0.14 0.11 0.16

Note: Authors’ calculations based on the Kantar FMCG At-Home Purchase Panel for 2012-2019.
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Figure B.1: Share of final period spending on products available in first period
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Note: Figure shows the distribution of the share of spending in the final period (December 2019) that goes on
products that were purchased in the first period (January 2012) across product categories.

Figure B.2: Chain drift bias: GEKS Walsh vs Bilateral Walsh

0.8

0.9

1.0

1.1

2012 2013 2014 2015 2016 2017 2018 2019 2020

In
de

x 
va

lu
e 

(J
an

 2
01

2=
1)

GEKS Walsh Walsh (fixed base)

Walsh (chained)

Note: Figure shows index number values for the GEKS-Walsh multilateral index, the Walsh fixed base index and a
monthly chained Walsh index. The indexes are calculated across all fast-moving consumer goods.
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Figure B.3: Distribution of cumulative inflation rates for the Törnqvist index with different chain-
ing methods
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Note: Figure shows the distribution of cumulative price changes from January 2012 to December 2019 across 178
product categories calculated using the bilateral Törnqvist index using different monthly chaining methods.

Figure B.4: Monthly CCDI and bilateral Törnqvist indexes for chocolate and confectionery

0.2

0.4

0.6

0.8

1.0

2012 2013 2014 2015 2016 2017 2018 2019 2020

In
de

x 
va

lu
e 

(J
an

 2
01

2=
1)

CCDI Chained

Chained (dissimilarity) Fixed Base

Note: Figure shows index number values for the CCDI multilateral index calculated over the whole period, the
Törnqvist fixed base index, a monthly chained Törnqvist index chained period-on-period, and a Törnqvist index
chained using the dissimilarity approach for the product Chocolate and Confectionary.
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Figure B.5: Chain drift bias: GEKS Fisher vs Bilateral Fisher
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Note: Figure shows index number values for the GEKS-Fisher multilateral index, the Fished fixed base index and a
monthly chained Fisher index. The indexes are calculated across all fast-moving consumer goods.

Table B.6: Summary Statistics

Variable Mean Min Pctl. 25 Pctl. 75 Max

Monthly churn 2.49 0.24 1.24 3.15 14.55

Annual churn 8.95 1.28 5.32 11.96 38.64

Seasonal pricing 7.47 2.71 5.04 8.68 27.99

Price promotions 23.54 2.22 15.85 29.89 50.27

Quantity promotions 9.63 0.029 3.90 13.91 29.75

Note: Numbers for monthly and annual churn are % of spending. Numbers for seasonal pricing are the maximum
difference in average log-price between calendar quarters (conditional on product fixed effects). Numbers for price
and quantity promotions are share of transactions. Summary statistics are across product categories.
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Table B.7: Determinants of chain drift bias (7 month window length)

CCDI GEKS-Fisher GEKS-Walsh GK

Monthly churn −0.006 0.019 0.055 −0.003
(0.108) (0.115) (0.091) (0.098)

Annual churn 0.356 0.323 0.334 0.560∗∗

(0.275) (0.294) (0.233) (0.249)

Pricing seasonality 0.504∗∗∗ 0.503∗∗∗ 0.421∗∗∗ 0.402∗∗∗

(0.109) (0.116) (0.092) (0.099)

Price promotions −0.058 −0.054 −0.041 −0.097∗

(0.058) (0.062) (0.049) (0.053)

Quantity promotions 0.042 0.044 0.020 0.036
(0.039) (0.042) (0.033) (0.035)

Observations 175 175 175 175
R2 0.206 0.183 0.208 0.215

Note: All indexes are extended using the mean splice. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The regressions are weighted
using the square root of the average number of observations in each calendar month for each product category.

C Different window lengths

In Figure C.1 we summarize the impact of different window lengths on average monthly chain

drift bias, in all cases using the mean splice. The figure is structured similarly to Figure 5.1 in the

main text – each panel represents a different index number, and within each panel, the boxplots

correspond to different window lengths. As before, we exclude the products with the three largest

positive and negative values for chain drift in each case. In the case of the CCDI, GEKS-Fisher

and GEKS-Walsh, we also include the difference between the multilateral index computed over

the full period and their corresponding bilateral indexes; these are equivalent to calculating the

multilateral index with a window length of one month.

For all index numbers, longer windows lengths lead to considerably less chain drift bias. For

a 25 month window (the longest we consider), the distribution of chain drift bias, under CCDI,

GEKS-Fisher, GEKS-Walsh and GK are similar. With a 25 month window, median average

monthly chain drift bias is -0.01 ppt for all indexes and the interquartile range is 0.04 ppt for
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the CCDI index, GEKS-Walsh, GEKS-Fisher and 0.03 ppt for the GK index. In contrast, for

a 13 month window, under the CCDI index, the median chain drift bias is -0.02 ppt and the

interquartile range is 0.05 ppt. Cumulating across all months, the median bias from using a 13

month window with the CCDI index would be 1.7ppt compared to 1.3 ppt when using a 25 month

window.

Figure C.1 also demonstrates that, while spliced indexes can exhibit chain drift bias even with

the longest window lengths we consider, it is noticeable that even short window lengths perform

considerably better than bilateral indexes. The median average monthly chain drift bias for the

bilateral Törnqvist implied by this measure is -0.13 ppt, around 10 times greater than the bias

with a 25 month window length.

48



Figure C.1: Chain drift bias using different window lengths (using mean splice)

(a) CCDI
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(b) GEKS-Fisher
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(c) GEKS-Walsh
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(d) GK
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Note: Each box plot summarizes the distribution (across product categories) of differences in average monthly
inflation between the spliced index (using the mean spliced) computed over the window length named in the horizontal
axis and the corresponding non-spliced index. We exclude the products with the three largest positive and negative
values for each plot. In the case of the CCDI, GEKS-Fisher and GEKS-Walsh, we also include the chain drift bias
associated with their corresponding bilateral indexes (equivalent to using a window length of one month). The GK
index does not have a corresponding bilateral index.
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